From Wikipedia, the free encyclopedia
The Maya calendar is a system of calendars and almanacs used in the Maya civilization of pre-Columbian Mesoamerica, and in some modern Maya communities in highland Guatemala and Oaxaca, Mexico.
The essentials of the Maya calendric system are based upon a system which had been in common use throughout the region, dating back to at least the 6th century BC. It shares many aspects with calendars employed by other earlier Mesoamerican civilizations, such as the Zapotec and Olmec, and contemporary or later ones such as the Mixtec and Aztec calendars. Although the Mesoamerican calendar did not originate with the Maya, their subsequent extensions and refinements of it were the most sophisticated. Along with those of the Aztecs, the Maya calendars are the best-documented and most completely understood.
By the Maya mythological tradition, as documented in Colonial Yucatec accounts and reconstructed from Late Classic and Postclassic inscriptions, the deity Itzamna is frequently credited with bringing the knowledge of the calendar system to the ancestral Maya, along with writing in general and other foundational aspects of Maya culture.[1]
The most important of these calendars is the one with a period of 260 days. This 260-day calendar was prevalent across all Mesoamerican societies, and is of great antiquity (almost certainly the oldest of the calendars). It is still used in some regions of Oaxaca, and by the Maya communities of the Guatemalan highlands. The Maya version is commonly known to scholars as the Tzolkin, or Tzolk'in in the revised orthography of the Academia de las Lenguas Mayas de Guatemala.[2] The Tzolk'in is combined with a 365-day calendar (known as the Haab, or Haab' ), to form a synchronized cycle lasting for 52 Haabs, called the Calendar Round. Smaller cycles of 13 days (the trecena) and 20 days (the veintena) were important components of the Tzolk'in and Haab' cycles, respectively.
A different form of calendar was used to track longer periods of time, and for the inscription of calendar dates (i.e., identifying when one event occurred in relation to others). This form, known as the Long Count, is based upon the number of elapsed days since a mythological starting-point.[3] According to the correlation between the Long Count and Western calendars accepted by the great majority of Maya researchers (known as the GMT correlation), this starting-point is equivalent to August 11, 3114 BC in the proleptic Gregorian calendar or 6 September in the Julian calendar (−3113 astronomical). The Goodman-Martinez-Thompson correlation was chosen by John Eric Sydney Thompson in 1935 on the basis of earlier correlations by Joseph Goodman in 1905 (August 11), Juan Martínez Hernández in 1926 (August 12), and Thompson himself in 1927 (August 13).[4][5] By its linear nature, the Long Count was capable of being extended to refer to any date far into the future (or past). This calendar involved the use of a positional notation system, in which each position signified an increasing multiple of the number of days. The Maya numeral system was essentially vigesimal (i.e., base-20), and each unit of a given position represented 20 times the unit of the position which preceded it. An important exception was made for the second-order place value, which instead represented 18 × 20, or 360 days, more closely approximating the solar year than would 20 × 20 = 400 days. It should be noted however that the cycles of the Long Count are independent of the solar year.
Many Maya Long Count inscriptions are supplemented by a Lunar Series, which provides information on the lunar phase and position of the Moon in a half-yearly cycle of lunations.
A 584-day Venus cycle was also maintained, which tracked the heliacal risings of Venus as the morning and evening stars. Many events in this cycle were seen as being astrologically inauspicious and baleful, and occasionally warfare was astrologically timed to coincide with stages in this cycle.
Other, less-prevalent or poorly understood cycles, combinations and calendar progressions were also tracked. An 819-day Count is attested in a few inscriptions. Repeating sets of 9-day and 13-day intervals associated with different groups of deities, animals, and other significant concepts are also known.
Maya concepts of time
With the development of the place-notational Long Count calendar (believed to have been inherited from other Mesoamerican cultures), the Maya had an elegant system with which events could be recorded in a linear relationship to one another, and also with respect to the calendar ("linear time") itself. In theory, this system could readily be extended to delineate any length of time desired, by simply adding to the number of higher-order place markers used (and thereby generating an ever-increasing sequence of day-multiples, each day in the sequence uniquely identified by its Long Count number). In practice, most Maya Long Count inscriptions confine themselves to noting only the first five coefficients in this system (a b'ak'tun-count), since this was more than adequate to express any historical or current date (20 b'ak'tuns cover 7,885 solar years). Even so, example inscriptions exist which noted or implied lengthier sequences, indicating that the Maya well understood a linear (past-present-future) conception of time.
However, and in common with other Mesoamerican societies, the repetition of the various calendric cycles, the natural cycles of observable phenomena, and the recurrence and renewal of death-rebirth imagery in their mythological traditions were important and pervasive influences upon Maya societies. This conceptual view, in which the "cyclical nature" of time is highlighted, was a pre-eminent one, and many rituals were concerned with the completion and re-occurrences of various cycles. As the particular calendaric configurations were once again repeated, so too were the "supernatural" influences with which they were associated. Thus it was held that particular calendar configurations had a specific "character" to them, which would influence events on days exhibiting that configuration. Divinations could then be made from the auguries associated with a certain configuration, since events taking place on some future date would be subject to the same influences as its corresponding previous cycle dates. Events and ceremonies would be timed to coincide with auspicious dates, and avoid inauspicious ones.[6]
The completion of significant calendar cycles ("period endings"), such as a k'atun-cycle, were often marked by the erection and dedication of specific monuments (mostly stela inscriptions, but sometimes twin-pyramid complexes such as those in Tikal and Yaxha), commemorating the completion, accompanied by dedicatory ceremonies.
A cyclical interpretation is also noted in Maya creation accounts, in which the present world and the humans in it were preceded by other worlds (one to five others, depending on the tradition) which were fashioned in various forms by the gods, but subsequently destroyed. The present world also had a tenuous existence, requiring the supplication and offerings of periodic sacrifice to maintain the balance of continuing existence. Similar themes are found in the creation accounts of other Mesoamerican societies.[7]
[edit] Tzolk'in
Main article: Tzolk'in
The tzolk'in (in modern Maya orthography; also commonly written tzolkin) is the name commonly employed by Mayanist researchers for the Maya Sacred Round or 260-day calendar. The word tzolk'in is a neologism coined in Yucatec Maya, to mean "count of days" (Coe 1992). The various names of this calendar as used by Precolumbian Maya peoples are still debated by scholars. The Aztec calendar equivalent was called Tonalpohualli, in the Nahuatl language.
The tzolk'in calendar combines twenty day names with the thirteen numbers of the trecena cycle to produce 260 unique days. It is used to determine the time of religious and ceremonial events and for divination. Each successive day is numbered from 1 up to 13 and then starting again at 1. Separately from this, every day is given a name in sequence from a list of 20 day names:
Tzolk'in calendar: named days and associated glyphs
Seq.No. 1
DayName 2
Glyphexample 3
16th C.Yucatec 4
reconstructedClassic Maya 5
Seq.No. 1
DayName 2
Glyphexample 3
16th C.Yucatec 4
reconstructedClassic Maya 5
01
Imix'
Seq.No. 1
DayName 2
Glyphexample 3
16th C.Yucatec 4
reconstructedClassic Maya 5
Seq.No. 1
DayName 2
Glyphexample 3
16th C.Yucatec 4
reconstructedClassic Maya 5
NOTES:
The sequence number of the named day in the Tzolk'in calendar
Day name, in the standardised and revised orthography of the Guatemalan Academia de Lenguas Mayas[2]
An example glyph (logogram) for the named day. Note that for most of these several different forms are recorded; the ones shown here are typical of carved monumental inscriptions (these are "cartouche" versions)
Day name, as recorded from 16th century Yukatek Maya accounts, principally Diego de Landa; this orthography has (until recently) been widely used
In most cases, the actual day name as spoken in the time of the Classic Period (ca. 200–900) when most inscriptions were made is not known. The versions given here (in Classic Maya, the main language of the inscriptions) are reconstructed on the basis of phonological evidence, if available; a '?' symbol indicates the reconstruction is tentative.[8]
Some systems started the count with 1 Imix', followed by 2 Ik', 3 Ak'b'al, etc. up to 13 B'en. The trecena day numbers then start again at 1 while the named-day sequence continues onwards, so the next days in the sequence are 1 Ix, 2 Men, 3 K'ib', 4 Kab'an, 5 Etz'nab', 6 Kawoq, and 7 Ajau. With all twenty named days used, these now began to repeat the cycle while the number sequence continues, so the next day after 7 Ajaw is 8 Imix'. The repetition of these interlocking 13- and 20-day cycles therefore takes 260 days to complete (that is, for every possible combination of number/named day to occur once).
[edit] Origin of the Tzolk'in
The exact origin of the Tzolk'in is not known, but there are several theories. One theory is that the calendar came from mathematical operations based on the numbers thirteen and twenty, which were important numbers to the Maya. The numbers multiplied together equal 260. Another theory is that the 260-day period came from the length of human pregnancy. This is close to the average number of days between the first missed menstrual period and birth, unlike Naegele's rule which is 40 weeks (280 days) between the last menstrual period and birth. It is postulated that midwives originally developed the calendar to predict babies' expected birth dates.
A third theory comes from understanding of astronomy, geography and paleontology. The mesoamerican calendar probably originated with the Olmecs, and a settlement existed at Izapa, in southeast Chiapas Mexico, before 1200 BC. There, at a latitude of about 15° N, the Sun passes through zenith twice a year, and there are 260 days between zenithal passages, and gnomons (used generally for observing the path of the Sun and in particular zenithal passages), were found at this and other sites. The sacred almanac may well have been set in motion on August 13, 1359 BC, in Izapa. Vincent H. Malmström, a geographer who suggested this location and date, outlines his reasons:
(1) Astronomically, it lay at the only latitude in North America where a 260-day interval (the length of the "strange" sacred almanac used throughout the region in pre-Columbian times) can be measured between vertical sun positions -- an interval which happens to begin on the 13th of August -- the day the peoples of the Mesoamerica believed that the present world was created; (2) Historically, it was the only site at this latitude which was old enough to have been the cradle of the sacred almanac, which at that time (1973) was thought to date to the 4th or 5th centuries B.C.; and (3) Geographically, it was the only site along the required parallel of latitude that lay in a tropical lowland ecological niche where such creatures as alligators, monkeys, and iguanas were native -- all of which were used as day-names in the sacred almanac.[9]
Malmström also offers strong arguments against both of the former explanations.
A fourth theory is that the calendar is based on the crops. From planting to harvest is approximately 260 days.
No comments:
Post a Comment